
 QEX November/December 2019 3

Michael L. Foerster, WØIH

1403 Foxcroft Place, Winona, MN 55987-4845; w0ih@arrl.net

Building an LDMOS Amplifier
with an Arduino Interface

Use these concepts to assemble an Arduino controlled
160 m - 6 m LDMOS amplifier.

We are each given different talents and
skills from our parents, schools that we
attended, job experiences as well as life
experiences. For me, I learned carpentry and
construction from my father, electronics in
school and a host of technical know-how
as a field service technician, even some
programming exposure through my jobs as a
software test engineer, and a great deal of RF
background through my 50+ years in Amateur
Radio. From these life experiences, I chose to
embark on one of the biggest projects I had
ever tried; I built a Laterally Diffused Metal
Oxide Semiconductor (LDMOS) amplifier
with an Arduino controller (Figure 1) to
interface between the amplifier and my
radios: the Elecraft K3S and KX3.

This article does not present the “end all”
to building amplifiers, but rather just gives
a few ideas to build from or perhaps get the
reader to contemplate other solutions for the
problems that I faced. Consider building an
amplifier yourself, but if nothing else, enjoy
reading the article.

Desired Functionality
I wanted the Arduino interface to power

up the amplifier and monitor the operating
band of the radio to switch the amplifier low
pass filter (LPF) band switch. I also wanted
to configure the radio output power on a per-
band basis and have the Arduino load the
power setting into the radio for power output
and tune power parameters. Monitoring and
displaying the band, voltage, forward and
reflected transmit power, temperature and

input voltage seemed a very natural part of
the project as well. Some other functions
such as the timeout timer and Bypass/Operate
selections were enhancements to the system.

In developing the program in the Arduino,
I added a lot of functionality that is not strictly
necessary. You can remove these to pare the
system down to its functional simplicity.

Amplifier Project Choices
I studied different available LDMOS

designs and decided to use a single solid state
power amplifier (SSPA) device that provides
over 1000 W output with less than 5 W of
drive power. I didn’t feel the extra 400 to 500
W would be worth the added cost.

I’ve learned over the years that I tend
to forget some details of operating high-
powered equipment, and that this can be
costly since some of these devices can be
very unforgiving! I felt it was very important
to build in automatic band switching. There

Figure 1 — Front panel of the amplifier.

4 QEX November/December 2019

are boards available to read the BCD band
outputs from rigs like my K3S, but I also want
to use this amplifier with my KX3.

Amplifier Development
I considered the different kits and parts

that were available online for the LDMOS
amplifiers and settled on the kit parts from
Jim Klitzing, W6PQL [1]. I purchased most
of the boards in kit form, rather than pre-

Figure 2 — Amplifier rear panel.

Figure 3 — Amplifier with front panel tilted down.

assembled. I ordered the SSPA, LPF, control
board, and two of the dual direction detectors
(SWR boards) as kits. I also purchased as
complete assemblies, the input and output
relay boards as well as a dc FET switch that
turns on the power to the SSPA with a signal
from the control board. The instruction page
also lists some of the other required parts
for the amplifier that can be purchased from
mouser.com, eBay.com or other suppliers.
I purchased the BLF188XR LDMOS chip

already soldered in place on the copper heat
spreader, as I felt this was a critical process
best left to the experienced vendor. I built
the rest of the major assembly kits using the
instructions provided.

The biggest challenge in the kit building
phase was the control board, because it used
many small surface-mount parts. This was
my first experience in soldering surface-
mount devices. I learned to first add a touch of
solder to one pad, place the part with tweezers
and heat it up, then solder the second side and
re-solder the first side. I checked and double-
checked my parts placement, especially on
the control board. Jim Klitzing, W6PQL, was
a great help in getting through a few rough
spots on the kit builds. The control board
didn’t work due to a few poor solder joints on
some of the surface mount op-amps. I later
learned a touch of liquid flux makes the solder
flow much better on these delicate leads.
Looking back, I should have purchased the
control board pre-assembled.

One of the most valuable tools I have is
a jeweler’s eyepiece with a side LED light
for close inspection of the parts placement
and solder joints. A microscope with a USB
interface might be very useful for this type of
work. My solder station, with interchangeable
solder tips and adjustable temperature,
proved to work very well throughout this
project. It worked for the small surface-mount
parts as well as soldering the heavy #10 AWG
dc wires to the SSPA assembly.

The design of the case took a lot of
thought and time. Figure 2 shows the
completed rear panel. I had a 3U (5 ¼” high)
19” rack-mount cabinet in my junk box that
included some great RF-proof finger stock
on the top and bottom covers. This proved
to be perfect for the case. I purchased an
extra piece of 1/8” thick aluminum plate
for the bottom of the case to mount the heat
sink, resistors and other parts. This bottom
aluminum plate was mounted to the back
plate to allow removal from the case shell
for maintenance. I purchased a 4-40 tap and
matching drill, which I used extensively in
mounting resistors, boards, standoffs and
other parts on this plate and various places
within my project.

I also tried to make sure I could mount
the boards using connectors to allow for
easy removal for future maintenance. This
proved to be very useful, especially for the
LPF and front panel. I considered putting
BNC connectors for the RF input and output
lines on the LPF board, but to remove them
required unsoldering only the center wire and
removing the coax shield connection screws.
I built the front panel with a 20-pin connector
for the bulk of the connections, along with
two 5.5 mm connectors — reversed to
prevent incorrect installation — for the two
meter connections. Throughout the process

 QEX November/December 2019 5

of building, troubleshooting and modifying,
these parts required removal several times. I
also needed the ability to check voltages on
the front panel, so I bent two pieces of stiff
wire to allow the front panel to tilt down at
about a 45° angle (see Figure 3). Because
many of the control board connections were
spread throughout the board, I didn’t use
a connector on it. So far, I’ve only had to
remove the board once. I had to mark each of
the colored wires carefully to make sure that I
could re-install them correctly.

Most of the wiring was direct point-
to-point where I added small ferrite cores
wound with about 7 turns of wire. The cable
to connect the Arduino to a 15-pin VGA-
type connector was made of two shielded
8-conductor cables.

I tried to use color-coded wires throughout
the build of the amplifier and subsequent
Arduino project. I didn’t purchase all of the
colored wires separately, but rather used
some different cables with 8 or even 12
colored wires that I had in my junk box. I
didn’t follow any strict color coding, but I did
mark the colors used on all my schematics.
This will help for future troubleshooting or
modifications.

I learned quite a few things from Jim,
W6PQL, as I progressed through the
amplifier build. For one thing, I had the fans
butted up against the heat sink. He helped me
to understand that you need to allow at least
¾” of space between the fan and the heat sink,
or the fan output will be decreased greatly.
He also recommended using conductive
tape to cover the meters. I found some fairly
inexpensive 2” copper tape that molded over
the meters very well. Aluminum tape should
work equally well.

Individual ferrite cores should be used on
each signal lead at the source and destination
board throughout the amplifier to reduce
RF pickup. This is very important in an
environment where there is a lot of RF signal.
I inquired about passing two or more wires
through a single core, but Jim told me that
two wires make a great transformer. [Wire
pairs carrying dc currents should pass through
ferrite cores as plus and minus pairs to avoid
magnetizing the ferrites. — Ed.]

Although I’ve used inexpensive relays
before for high power RF control —
specifically for remote antenna switching
— Jim’s articles detail the testing and
use of these relays for high RF power,
including compensation for VHF and UHF
installations. The relays, seen in Figure 4, are
used for power switching for the input and
output as well as for the LPF.

Amplifier Power Supply
Many other builders of LDMOS

amplifiers favor surplus server-type power
supplies that can supply 60 A at 50 to 60 V.

Figure 5 — Layout of the power supply.

Figure 4 — Relay and SWR boards.

These can be very noisy — described as a jet
taking off — but the noise can be subdued
with modifications. I was aware of these,
but decided to build my own supply. I found
that four of the 12-V, 40-A supplies designed
for LED lighting can be connected in series,
and appeared to be a very good fit. The 40-A
versions sell for $25 each on eBay and are
available up to 60 A. I mounted some large
ferrite cores in both the power supply and the
amplifier end of the dc supply cable to reduce

any possible RFI. I have had no noise issues.
I purchased a large 12” by 12” by 6”

plastic electrical box from the local big-box
hardware store for about $30. This allowed
mounting the four power supplies in a square
configuration (Figure 5). One was set slightly
higher than the rest to allow mounting the ac
entrance connector below it. I drilled holes
to allow for air flow into the box, as well
as for the supply voltage adjust screws and
the 120/240 input voltage switches on the

6 QEX November/December 2019

bottom. Additionally, I drilled four large 2”
holes for the supply exhaust fans and used
some thick foam to force the air flow outside
the box. The solid state relay (SSR) for the ac
switch was mounted in the center along with
the soft-start resistor and bypass relay. Five
digital voltmeters on top of the case display
the voltage across each supply, plus the total
voltage. Each supply was setup for 12.5 V to
provide a total 50-V output.

The mounting holes were drilled to match
the supply mounting pattern. The supplies
were wired for ac and dc, then dropped into
the box and screwed into place. I can run the
power supplies on 120 V ac, but the system
runs better on 240 V ac so the shack lights
won’t flicker.

Initial Amplifier Operation
I discovered in some of my early testing on

one band that the amplifier would oscillate;
the power output would cycle rapidly from
zero to full power. In troubleshooting I found
I had the cables behind the amplifier poorly
dressed, and somewhat randomly looped
around. The amplifier has a great deal of
gain, and if the input cable gets too much
feedback from the output coax, it can affect
the amplifier in drastic ways. I now keep the
input cable well separated from the output,
and use double-shielded Teflon RG-142U
coax for better isolation. I also added a heavy
bolt with a wing nut to the back of the case to
ground the heat sink and chassis internally for
a connection to my station ground.

Nearing completion, I got anxious and
started testing the power output of the
amplifier into a dummy load, but I had not
finished checking out the protection circuits.
At one point, I transmitted into the amplifier
with the band switch set incorrectly. I
immediately noticed the power not coming
up and shut down within a half second. This
short burst, however, blew out the LDMOS
chip. In discussing the loss with Jim, he
suggested that to check out the protection
circuit, simply set the band switch down one
band, key the microphone and snap your
fingers. The system should go into protection
mode (SWR FAIL) instantly. I requested,
and Jim added something to his protection
circuit description to help others. He added a
test using a 1.5 V battery to the Safety Sensor
output line (no transmit required) that must
put the amplifier control board into protection
mode, shutting down the FET dc power
switch and turning on the SWR Fail LED.
In troubleshooting, I found I had the SWR
Fail LED installed backwards, preventing the
circuit from working.

The fan switch circuit control board is
designed to turn the fans on during transmit.
When the heat sink reaches about 105 °F, the
fans are turned on constantly, even during the

receive cycle, and turn off at about 100 °F. I
found that during a contact, the temperature
seemed to stay around 100 °F and didn’t go
below that, because the fans were off. The
fans also seemed to come on and stay on
quite frequently. I made a minor modification
by adding a 470 W resistor across the fan
switching FET to ground that turned on the
fans all the time, but at a slow quiet speed.
During the receiving cycle, the temperature
of the heat sink will now continue to drop.
During transmit, the added resistor is shorted
out by the existing FET switch, and the fans
come on at the normal speed.

Solid State Relay Circuit

Rather than run the ac power through
the amplifier to the switch that turns on the
power supply, I used a 240 V ac solid state
relay (SSR) in the power supply. This can be
enabled by a 5 V dc signal sourced from the
Arduino. Most SSRs are basically ac SPST
switches that can be enabled with a dc voltage
between 3 and 12 V dc at a few milliamps. I’ve
used SSRs fairly liberally around my shack.

Input Power Attenuator
In experimenting with the communication

commands, I discovered I could change
the output power from either the K3S or
KX3 radio in 1-W increments only, even
though manual control allowed the power
to be incremented in tenths of a watt.
Considering the amplifier required around
2-W of drive, this wasn’t enough resolution.
A 6 dB attenuator would allow the system to
increment the power by 0.25 W and 10 W
would provide 2.5 W into the amplifier. The
6-meter band typically requires 5 to 6 W of
drive. I therefore set up the 6 dB attenuator
with a relay input so when energized from
the 6-m LPF switch, it would bypass the
attenuator. The attenuator also ensured that
I would not overdrive the amplifier input
from the KX3. For the K3S, I found the
commands to put the internal KPA3 — the
100 W amplifier built into the rig — in bypass
mode, ensuring that it could not overdrive the
amplifier input.

A note of caution: I have learned that
some radios when set for lower power, have
been reported to transmit 100 W or more
on the first “dit” or transmitted syllable.
Transmitting like this, even a short signal
can be devastating to a solid state amplifier.
Before testing with your specific radio, you
might want to investigate and perhaps even
test your radio at low power, by using a peak
reading wattmeter or an oscilloscope. In
investigating this phenomenon, I found an
article [2] by Phil Salas, AD5X, on using a
gas discharge tube to limit the overshoot to
the amplifier.

Arduino Development
There are quite a number of different

Arduino boards available, each with different
capabilities. Because my plans were to use
more than one communication port, I settled
on the 4-port Arduino MEGA. Initially I am
using two communication ports, either of
which can connect to the radio. I also started
with a 2-line, 16-character display from
Adafruit.com that includes five push buttons.
This shield — a shield is a board connected
to an Arduino — requires only two wires
using the I2C bus for communicating with
the display. There are other similar displays
and keyboard combinations available but
they require the use of many more pins.
I discovered I could mount the Arduino
very close to the amplifier and use a longer
4-conductor shielded cable for 5 V power,
ground, and SCL and SDA for the I2C
wires, to remotely mount the display and
keys. I used an old PS2 mouse cable to allow
disconnecting the display box. In researching
the I2C communications bus, I found that the
distance between the Arduino and the display
could be lengthened by adding 2.2 kW pull-up
resistors to the SCL and SDA output lines for
the I2C bus.

Power for the Arduino is provided by a
small 9-V wall wart supply. I chose 9 V to
limit the voltage drop across the Arduino
internal voltage regulator. The current draw of
about 110 mA does not create a temperature
problem. Do not to use the small variable
switching power regulators since they
generate a considerable amount of RF noise.

Arduino Mounting Cases
Figure 6 shows the case for my display.

I cut an opening for the display, and drilled
holes centered above the 6 key buttons, and
mounted some rubber push buttons cut from
an old TV remote control. This gives the keys
a very comfortable, tactile feel.

I found a metal case to mount the Arduino
MEGA. The case was a bit tight (Figure 7)
once I mounted the board with the circuitry,
beeper, serial interface and internal wiring,
but it was quite manageable. The boards are
removable for maintenance.

If you decide to use a non-conductive
case, make sure you line the inside with
copper or aluminum tape and ground it to
the system. This helps prevent noise from the
Arduino getting into your receiver.

I was concerned about heat buildup in the
box that houses the Arduino, so I mounted a
very small — about 1” diameter — 5 V fan
on the back of the case, and drilled exhaust
holes in the top and bottom of the front. I
also added a 10 kW thermistor to measure the
internal case temperature, see Figure 8. An
analog input measures the voltage across the
thermistor for a temperature measurement. I

 QEX November/December 2019 7

set a pulse width modulation (PWM) output
to drive the fan at different speeds. The fan,
it turns out, was unnecessary. The only time
it has come on was during my testing phase,
when I gently warmed up the case with a
heat gun.

I also added a line from the thermistor
inside the amplifier to another analog input
on the Arduino, and put a 20 kW resistor in
series with the line to the Arduino analog
input to keep from loading the thermistor
circuit. The added resistor would not affect
the readings appreciably, since the input
impedance on the Arduino analog input
is quite high. I was able to use the same
software routines to read the thermistor for
the Arduino temperature and the amplifier
heat sink because both were setup with the
thermistor connected to ground. I used an
external digital thermometer to calibrate the
thermistor readings.

Arduino I/O Circuits
Never put more than 5 V on any of the

Arduino input or output pins. I used an opto-
isolator for each of the LPF band switch
relays, along with an NPN transistor to
ensure I had enough current to drive the pair
of relays on the LPF board, see Figure 9.
Similarly, I used opto-isolators to drive the 12
V outputs from the amplifier to the Arduino
inputs for the Transmit, SWR Failure, and
Over-Temperature indications. During my
design phase, this seemed like a good safety
measure, but after re-evaluating the system,
I didn’t end up with full isolation between
the amplifier and the Arduino. This led me
to believe many of these opto-isolators were
not necessary. The only exception would be
turning on the 12 V to the Bypass switch,
where the pull-up resistor to the PNP resistor
would put 12 V on the Arduino pin when not
enabled.

The actual amplifier front panel switches
are left in the unpowered positions, the band-
switch in the Auto/160 m, power switch to
Off and Operate/Bypass switch in Bypass
position. This allows the Arduino to control
these functions, otherwise the system can
also be run manually if the Arduino is
disconnected.

There are essentially four different types
of circuits used to interface between the
amplifier and the Arduino. All of these
circuits must limit the voltage to 5 V on any
of the Arduino pins.

The LPF circuit board has five 12 V
relays to enable the six band filter segments.
The 160-meter segment is enabled whenever
none of the other segments is enabled. The
common side for all relays is tied to +12
V and the negative side of each relay must
be switched to ground to enable the band
segments. The relay must have a snubber

QX1911-Foerster08

Arduino
Analog

Input

Arduino
3.3 V

Source

10 kΩ

1 μF

−t°

10 kΩ
Thermistor

Figure 6 — The display housing.

Figure 7 — Internal view of the Arduino housing.

Figure 8 — Thermistor circuit.

8 QEX November/December 2019

diode across it (seen in Figure 9) to prevent
damage to the transistor. This is a normal part
of the relay circuit on the LPF board for each
of the five relays. Because only one relay
will be enabled at a time, all five relay driver
circuits can share a single pull-up resistor.

QX1911-Foerster09

Low to Activate

Arduino
Output

5 V

470 Ω

4N33

5 V

1 5

2 4

1.5 kΩ

B

C

E

12 V

Amplifier Relay
Circuit for LPF

NPN
2N2222

Arduino
Output

2.2 kΩ

B

C

E

12 V

Amplifier Relay
Circuit for LPF

NPN
2N2222

High to Activate

A. Opto-isolated Relay Driver

B. Direct Relay Driver

QX1911-Foerster09

Low to Activate

Arduino
Output

5 V

470 Ω

4N33

5 V

1 5

2 4

1.5 kΩ

B

C

E

12 V

Amplifier Relay
Circuit for LPF

NPN
2N2222

Arduino
Output

2.2 kΩ

B

C

E

12 V

Amplifier Relay
Circuit for LPF

NPN
2N2222

High to Activate

A. Opto-isolated Relay Driver

B. Direct Relay Driver

Figure 9 — Connections between the Arduino and relay driver: (A) with opto-isolator, and (B) direct.

QX1911-Foerster10

Low to Activate

12 V
Trigger
Signal

B

C

E

A. Opto-isolated Input to Arduino

B. Direct Input to Arduino

Arduino
Input

5 V

470 Ω

1 5

2 4

10 kΩ

2 kΩ0.033 μF

12 V
Trigger
Signal

10 kΩ

2.7 kΩ0.033 μF Low to Activate

Arduino
Input

4N33

Figure 10 — Arduino digital input circuit: (A) with opto-isolator, and (B) direct connection.

Any digital inputs (Figure 10) from the
amplifier — Transmit, SWR Fail, and Over-
Temperature — can be sent to the Arduino
through a pair of resistors as a voltage divider
to limit the input to less than about 4 V to
be safe. The minimum input voltage for an

Arduino is about 2.4 V.
A 5 V source (Figure 11) to enable the

SSR, or enable the Operate mode to the
amplifier can be accomplished by providing
a low signal from the Arduino pin to the
base of a PNP transistor, through a 1.5 kW

 QEX November/December 2019 9

QX1911-Foerster11

Low to Activate

Arduino
Output

5 V

470 Ω

4N33
1 5

2 4

1.5 kΩ
B

Power
(see table)

PNP
2N2907

A. Opto-isolated Drive

B. Direct Drive

C

E

5 V Power to Drive SSR,
Not for 12 V Power

Drive
(see table)

Power Drive

5 V SSR

12 V Bypass SW

Low to Activate

Arduino
Output

1.5 kΩ
B

5 V

PNP
2N2907

C

E

SSR

resistor. The emitter of the PNP is tied to
the positive voltage, either 5 or 12 V, and
brought low to enable a positive voltage to the
collector to turn on the output of the circuit. A
special circuit may be required to ensure that
switching 12 V does not reach the Arduino
input.

Figure 12 shows how the 50 V supply
voltage is connected from the amplifier to
the Arduino to be measured using the analog
inputs. To limit this voltage to no more than
5 V, it is prudent to add a Zener diode to limit
the voltage to less than 5 V. I used 4.7-V
Zener diodes across each input to make sure
the voltage cannot go above 5 V. As for the 50
V input, the voltage from the supply should
be limited to around 4 V for the 50 V reading.
This allows headroom for the voltage to rise
above that value, indicating a high voltage
failure. Each analog input should also have
a small 100 mH choke to limit any RF signal
from affecting the inputs.

Serial Communications
The biggest challenge I faced was getting

the communication to the radios to work
reliably. The lesson I learned was that the
inexpensive MAX3232 boards available on
eBay are very prone to oscillation, drawing
in excessive of 200 mA and with very
intermittent behavior. I finally ordered real
Maxtor MAX3232 devices from a US online
provider and replaced the chips on the small
boards. Communications have since worked
flawlessly.

While trouble shooting this problem,
I used an old trick to measure the current
without having to break the circuit. Place
a diode capable of supporting the circuit
current in series with the positive power
input (Figure 13). You can then measure
the current through the circuit at any time by
placing your DVM current meter across the
diode. The current meter has a much lower
voltage drop than the diode, allowing you to
accurately measure the current to the circuit
without actually interrupting the current flow
to the circuit.

Forward and Reflected Power
Indications

I opted for a cross-needle power indication
for the forward and reflected power. In
retrospect I should have purchased LED
metering. Typical SWR boards have negative
voltage outputs, but metering and input to
the Arduino requires a positive voltage. As
it turns out, the LED meters that Jim had
available have an op-amp that converts the
negative voltage to a positive voltage with no
negative supply required. I got boards from
Jim with the op-amps but with out the LEDs.
Considering that the metering isn’t intended
to be exact, the LED meters would have been

QX1911-Foerster12

50 V

4.7 V
Zener

0.033 μF

Arduino
Analog
Input

20 kΩ
10 Turn Pot

100 μH

Adjust pot to 4.0 V before
connecting to Arduino.

Figure 11 — The 5 V drive to the solid state relay: (A) with opto-isolator, and (B) direct
connection.

Figure 12 — Reading the 50 V signal without exceeding the Arduino 5 V limit.

just fine for the amplifier. When using the
op-amp driver, make sure that the voltage to
the Arduino analog inputs can never exceed 5
V. As with other analog inputs, I added a 4.7
V Zener diode across the op-amp output.

Arduino Code
I won’t go into a great deal of detail of

coding the Arduino, but there are a few
concepts worth pointing out. My project

was designed for my Elecraft radios, but
the commands for other radios will be very
similar. You need just a few basic commands
such as reading the operating frequency,
reading and setting the radio power output,
and turning the radio off.

The Arduino first has a setup() routine,
which defines all of the input and output
pins and executes only once during startup.
This is followed by the loop() code, which is
executed from the top to the bottom, and then

10 QEX November/December 2019

QX1911-Foerster13

Load

DC
Power
Source

Digital
Current
Meter

repeated constantly. On this project I learned
to use the tabs in the Arduino development
environment to divide up all of the code into
different subject pages. Creating a tab is quite
simple. Click on the down arrow button on the
upper right side of the Arduino development
environment, and click “New Tab”. This
allowed me to split up the code into different
logical files, which makes developing and
debugging much easier to understand. All
of the declarations, setup() and loop() are in
one file. The other files are: Analog, Band,
Buttons (keys), Display, Eeprom, Morse,
PowerUpDown, RigComms, Timeout, Subs
(State Subroutines from main loop).

If you want to view the code I have
written, download the Arduino Integrated
Development Environment (IDE) [3]. Then
download my code files from the www.arrl.
org/QEXfiles web page into a directory
named “LDMOS-Amp-IF”. Double click any
of the files in that directory. All of the files
should open at once, the main “LDMOS-
Amp-IF” file starts on the left. The rest are in
alphabetical order.

You will also need the Adafruit display
driver to compile the project. Download the
Sketch/Include Library/Add.ZIP Libarary [4]
and install it in your Arduino environment.
You will also need to set the “Tools/Board”
menu to “Arduino Mega”.

State Machine Flow
I set up the code flow as a “state machine”

(see www.arrl.org/QEXfiles), which defines
a number of different states, or modes, that
are named using easy to understand NAMES
within the code. Each state is a very clearly
defined name. The states change when the
user presses the pre-defined keys or from
the digital inputs from the amplifier such as
“Transmit”, “SWR Fail” or “High-Temp”.
This makes it very easy for the programmer
developing the code to keep track of the
operations within each state for not only the
main loop but also for the key button or the
display routines.

The Arduino will execute a loop roughly

every 200 ms when running in most modes,
other than ModeOff and some of the start-up
and shut-down routines. As long as you know
and understand the modes, it’s very easy to
figure out the key (button) actions.

Key Actions:
• From ModeOff, Press Select key, proceeds

to ModePowerTurnedOn
 • From ModeReceive, press of Select key

cycles to ModeSetupBandPower (Start
of Setup Mode)

– Up Key increases power by 1 W to a 12
W maximum

– Down Key decreases power by 1 W to a
1 W minimum

– Right Key changes band up (80 m to 40
m, etc.)

– Left Key changes band down
• From ModeSetupBandPower, press Select

key cycles to ModeSetupTimeout
– Up Key increases time by 1 hour to a 9

hour maximum
– Down Key decreases time by 1 hour to a

1 hour minimum
• From the ModeSetupTimeout, press Select

key cycles to ModeSetupBypOper
– Up key sets mode after band change to

Operate mode
– Down key sets mode after band change to

Bypass mode
• From ModeSetupBypOper, press Select

key cycles back to ModeReceive
• From ModeReceive, pressing the right

key will reset the timeout timer
• From ModeReceive, pressing the Left

key will repeat the last Morse error
code

• From ModeReceive, a 3 second press of
the Select Key turns system off and
change to ModeOff

• During Power down routine, pressing the
Left key will prevent the radio from
being powered off.

The display actions are setup similarly, see
Figure 14. Knowing what state the code is in
makes it easy to define what is shown on the
display for each mode.

In some of my early code testing, I found
that the system would occasionally attempt
to change bands while I was transmitting. It
didn’t take long to figure out that I needed
to inhibit any band changes during transmit,
when the RF signal could affect the circuits.
The routine to check the radio frequency
is executed about every two seconds. The
fix was to simply keep resetting the timer
for this routine constantly during transmit.
Therefore, the check for band change was
never executed until at least two seconds after
the transmit cycle was completed. Anytime a
band change is detected, it’s always wise to
wait a short period of time (100 ms) and then
recheck the change, to be certain there was
not an invalid change momentarily detected. I
felt it was also important to put the amplifier

in Bypass mode during the band changeover
period.

System Test Procedure
Before I retired I was a software test

engineer. I wrote formal test procedures and
executed them for the projects on which I
worked. Back then, most of the testing was
done using test automation software. True to
my past experience, I wrote and executed a
test procedure, but executed it manually. I’ve
actually executed the tests a number of times
as I made changes to the code. I did find bugs
in my code and problems with the hardware
as a result of the testing, and even found some
new enhancements to add to the system. I
discovered I wasn’t sending an adequate
error message, should the system not preset
the power in the radio, or disable the K3
internal power amplifier. At this point I also
added commands to turn off the radio, as well
as the amplifier. The test procedure, see the
QEXfiles web page, is also nice to execute
after making a number of code changes to
make sure everything is still operating as
intended.

You need to pay very close attention to
any failure modes that are possible with the
system, things like if the frequency reading is
invalid, or if the writes to the rig power or tune
output fail. After each write to change the rig
power, you should verify that the setting was
successfully initiated. Any failure of these
functions must cause the system to go into
Bypass mode, preventing possible amplifier
action that could damage the amplifier by
overdriving the input. It is wise to check

Figure 13 — Current measurement solution
that doesn’t require breaking a connection.

Figure 14 — Display progression.

 QEX November/December 2019 11

the loop time for the different modes often.
You may find some of your routines take too
long to execute, and timing may need to be
adjusted to compensate.

Code Reviews
One of the other habits I retain from

my professional days is to review my code.
Through the reviews, I’ve added many
comments and modifications to the code to
make it more readable and cleaner, besides
fixing a number of bugs. I have even asked
my son, Tony Foerster, KEØPXK, to review
my code. It helps to have another eye on the
code to keep you from developing bad habits,
and spotting things you may take for granted.

Simplified Design Considerations
In this project I’ve added a lot of

functionality that may not be necessary for
everyone, such as controlling radio power
output, system power timeout, mode change
to bypass, turning the rig off, and so on.
Other designers may choose to include a 13
dB attenuator to allow a 100 W input, and
therefore controlling the power may not be
necessary to prevent overdriving the amplifier.

A much simplified version of the
controller could be built to read the band data
either by the Comms or BCD band outputs
(Elecraft or Yaesu) or even reading the analog
pin for an Icom radio to select the band for

band switching. You could consider adding
an Arduino NANO to simply follow your
radio band changes to change the band on
the amplifier. This could be done without a
display.

Another thought would be to mount the
display on the front panel of the amplifier
itself. A good RF shield would be necessary
to prevent the amplifier RF from affecting the
Arduino, and to keep noise from the circuits
from generating birdies in your receiver.

Future Plans

When I started this project, I had envisioned
a touch-screen display to operate the amplifier
interface. However, I wasn’t comfortable
learning to code the graphical display. Since I
was quite familiar with the 2-line, 16-character
displays, I decided to use it for the initial build.
In thinking about this upgrade, I may try using
an Arduino NANO internal to the amplifier
with just a serial communication line coming
out of the amplifier and going to another
Arduino, which would drive the touch-screen
display. The connection between these two
could be a serial communications port to
pass the information required between the
two. The communications to the rig would
be maintained out of the external Arduino
device.

Another future project is to allow this
amplifier to emulate the KPA500 serial
communications commands from the

Arduino to allow it to be used with remote
control. The challenge is not with the
amplifier commands, but rather allowing the
radio to communicate with both the Arduino
and the remote control access software
through a single port on the radio.

ARRL member Michael Foerster, WØIH,
holds an Amateur Extra Class license and
has been continuously licensed since he
received his first license, WNØVNH, in 1968,
then several months later as WAØVNH. He
has worked as an electronics technician, and
moved into software testing about 25 years
ago. Michael retired in 2015 and enjoys
experimenting with ham radio, remote radio
control, Arduinos and antennas. He also
spends part of his summers on a 28-foot
sailboat. His amateur station includes the
Elecraft K3S, P3, KPA500, along with a KX3
portable radio and vintage Heathkit SB-101,
HW-101 and SB-221 equipment.

Notes

[1] J. Klitzing, W6PQL, web page: www.
w6pql.com/

[2] P. Salas, AD5X, “Amplifier Overshoot-Drive
Protection”, QEX, Sep./Oct., 2018, pp.
15-16.

[3] Arduino Development Environment:
https://www.arduino.cc/en/Main/Software

[4] Adafruit Display/Keyboard Driver available
at: https://github.com/adafruit/Adafruit-
RGB-LCD-Shield-Library

